2024

Нейросетевые методы обработки изображений

Спецкурс проходит на факультете ВМК в весеннем семестре и посвящен задаче автоматической стилизации изображений, в которой входное изображение необходимо отобразить в стиле, задаваемым другим изображением. Например, это может быть стилизация семейной фотографии под стиль известного художника, либо стилизация дневного фото в ночное, либо преобразование фотографии в схематичную книжную иллюстрацию.


Для решения задачи существуют современные подходы переноса стиля (style transfer) и генеративно-состязательные сети (generative adversarial networks). Эта задача широко используется в индустрии развлечений (например, мобильное приложение Prisma было самым скачиваемым на Android в странах СНГ в течение 10 дней после выхода), при обработке фотографий и дизайне (функции стилизации были добавлены в Adobe Photoshop 2021), может применяться в мультипликации, наложении спецэффектов в фильмах, видеоиграх и средствах дополненной реальности, а также для более точной настройки методов машинного при обучении на одной предметной области, а применении модели к другой (transfer learning).


Помимо изображений указанный подход применим для видеопоследовательностей и данных из других предметных областей (текст, речь и музыка). Основные методы стилизации были предложены в последние 7 лет и опираются на глубокие нейронные сети, базовому изучению которых посвящена начальная часть курса.

Преподаватели спецкурса
Китов Виктор Владимирович
Кандидат физико-математических наук
Доцент кафедры математических методов прогнозирования ВМК МГУ

Основные научные интересы: методы автоматической обработки и стилизации изображений, анализ данных и прогнозирования средствами машинного и глубинного обучения

Требования к слушателям

Необходимы базовые знания по математическому анализу, линейной алгебре и теории вероятностей. Предварительных знаний работе с изображениями и по нейронным сетям не требуется.